项目名称: 固体氧化物燃料电池纳米结构阴极的构筑及中低温电化学性能

项目编号: No.51472077

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 李强

作者单位: 黑龙江大学

项目金额: 86万元

中文摘要: 固体氧化物燃料电池的电极微观结构与组分影响了三相界面处(TPB)的电化学催化反应速率,进而决定了电池的电化学性能。项目主要采用微乳液技术构筑类钙钛矿结构A2BO4型纳米结构阴极材料,研究电极的不同微观形貌(纳米线、纳米管、纳米颗粒等)对其中低温电化学性能的影响,并考察电极上氧还原反应机理。通过控制和调节阴极材料的显微结构,改善电极材料的氧输运及催化性能,延伸纳米电极材料的三相界面活性反应区域。拟选择离子-电子混合电导率较高的镍系和铜系Ln2-xAxMO4氧化物为阴极材料。其中,Ln是稀土元素La,Pr,Nd等,A是碱土金属Sr,Ca,Ba;过渡族金属元素Ni或Cu。通过构筑形貌可控的固体氧化物燃料电池纳米电极,研究材料的显微结构与氧缺陷类型对材料性能的影响,阐明阴极材料的合成工艺-显微结构-材料性能之间的相关机制,研究阴极反应机理,为新型电极材料的开发提供理论依据。

中文关键词: 固体氧化物燃料电池;纳米电极;电化学性能

英文摘要: The electrocatalysis reaction rate at triple phase boundary (TPB) depends on the microstructure and component of electrodes, which further determine the electrochemical performances of solid oxide fuel cells (SOFCs). In this project, the microemulsion method will be employed to prepare like-perovskite A2BO4 nanostructured cathode. We will examine the effect of different microstructure (such as nanowires, nanotubes and nanoparticles) on the intermediate and low temperature electrochemical performance of the cathode, and the mechanism of oxygen reduction reaction (ORR) on the cathode. Through the control and fabrication microstructure of the cathode material, improve oxygen transport properties and catalytic active of electrode, elong the length of triple phase boundry for nanoelectrode. The oriented, higher ionic-electronic mixed conductivity with nickel and copper Ln2-xAxMO4 oxides are cathode materials. Ln=La,Pr,Nd, etc, rare earth; A=Sr,Ca,Ba, Alkali earth metals; M=Ni,Cu,transition metals. Fabrication the solid oxide fuel cell (SOFC) nanoelectrode and exploration the relationship between morphology fabrication, oxygen deficiency type and cathode performance can reveals the laws between the synthesis process, microstructure and the material properties.Through studying the cathode reaction mechanism, we can provide the theory basis for the design and development of new electrode materials.

英文关键词: solid oixde fuel cells;nanostructured cathode;electrochemical performance

成为VIP会员查看完整内容
0

相关内容

严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
一文了解成分句法分析
人工智能头条
15+阅读 · 2019年4月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
相关资讯
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
一文了解成分句法分析
人工智能头条
15+阅读 · 2019年4月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员