The operating room (OR) is a dynamic and complex environment consisting of a multidisciplinary team working together in a high take environment to provide safe and efficient patient care. Additionally, surgeons are frequently exposed to multiple psycho-organisational stressors that may cause negative repercussions on their immediate technical performance and long-term health. Many factors can therefore contribute to increasing the Cognitive Workload (CWL) such as temporal pressures, unfamiliar anatomy or distractions in the OR. In this paper, a cascade of two machine learning approaches is suggested for the multimodal recognition of CWL in four different surgical task conditions. Firstly, a model based on the concept of transfer learning is used to identify if a surgeon is experiencing any CWL. Secondly, a Convolutional Neural Network (CNN) uses this information to identify different degrees of CWL associated to each surgical task. The suggested multimodal approach considers adjacent signals from electroencephalogram (EEG), functional near-infrared spectroscopy (fNIRS) and eye pupil diameter. The concatenation of signals allows complex correlations in terms of time (temporal) and channel location (spatial). Data collection was performed by a Multi-sensing AI Environment for Surgical Task & Role Optimisation platform (MAESTRO) developed at the Hamlyn Centre, Imperial College London. To compare the performance of the proposed methodology, a number of state-of-art machine learning techniques have been implemented. The tests show that the proposed model has a precision of 93%.


翻译:手术室(OR)是一个动态和复杂的环境,由多学科团队组成,在高端环境中共同工作,提供安全和高效的病人护理;此外,外科医生经常接触多种心理-组织压力因素,这可能对其眼前的技术表现和长期健康产生不利影响;因此,许多因素都有助于增加认知工作负荷,如时间压力、不熟悉解剖或手术室的分心等。本文建议采用一系列两种机器学习方法,在四种不同的外科任务条件下对CWL进行多式联运识别。首先,使用基于转移学习概念的模型,以确定外科医生是否正在经历任何CWL。第二,革命神经网络(CNN)利用这一信息确定与每项外科任务相关的CWL的不同程度。建议的多式方法考虑了电脑图(EEG)、功能近红外光谱仪(fNIRS)和眼科学生直径等相邻的信号。信号的分类在时间(时间)和频道精确度方面都具有复杂的关联性关系(时间)和频道精确性学习概念。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
68+阅读 · 2022年9月7日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
56+阅读 · 2021年5月3日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
53+阅读 · 2018年12月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关论文
Arxiv
68+阅读 · 2022年9月7日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
56+阅读 · 2021年5月3日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
53+阅读 · 2018年12月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
151+阅读 · 2017年8月1日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员