We introduce a new empirical Bayes approach for large-scale multiple linear regression. Our approach combines two key ideas: (i) the use of flexible "adaptive shrinkage" priors, which approximate the nonparametric family of scale mixture of normal distributions by a finite mixture of normal distributions; and (ii) the use of variational approximations to efficiently estimate prior hyperparameters and compute approximate posteriors. Combining these two ideas results in fast and flexible methods, with computational speed comparable to fast penalized regression methods such as the Lasso, and with superior prediction accuracy across a wide range of scenarios. Furthermore, we show that the posterior mean from our method can be interpreted as solving a penalized regression problem, with the precise form of the penalty function being learned from the data by directly solving an optimization problem (rather than being tuned by cross-validation). Our methods are implemented in an R package, mr.ash.alpha, available from https://github.com/stephenslab/mr.ash.alpha
翻译:我们为大规模多重线性回归引入了一种新的实验性贝耶斯方法。我们的方法结合了两个关键概念:(一) 使用灵活的“适应缩缩”前科,该前科通过正常分布的有限混合组合,接近正常分布的规模分布的非参数组合;和(二) 使用变式近似值,以有效估计前超参数和计算近似子体。将这两种观点结合起来,可以快速和灵活的方法,计算速度可与快速回归方法(如Lasso)相仿,并在多种情景中预测准确性更高。此外,我们表明,我们方法的后端值可以被解释为解决一个受惩罚的回归问题,通过直接解决一个优化问题(而不是通过交叉校准加以调整)从数据中学习惩罚功能的确切形式。我们的方法是在一个R包中实施的,从https://github.com/stephenslab/mr.ash.alpha中可以查到。