Strong generative models can accurately learn channel distributions. This could save recurring costs for physical measurements of the channel. Moreover, the resulting differentiable channel model supports training neural encoders by enabling gradient-based optimization. The initial approach in the literature draws upon the modern advancements in image generation, utilizing generative adversarial networks (GANs) or their enhanced variants to generate channel distributions. In this paper, we address this channel approximation challenge with diffusion models (DMs), which have demonstrated high sample quality and mode coverage in image generation. In addition to testing the generative performance of the channel distributions, we use an end-to-end (E2E) coded-modulation framework underpinned by DMs and propose an efficient training algorithm. Our simulations with various channel models show that a DM can accurately learn channel distributions, enabling an E2E framework to achieve near-optimal symbol error rates (SERs). Furthermore, we examine the trade-off between mode coverage and sampling speed through skipped sampling using sliced Wasserstein distance (SWD) and the E2E SER. We investigate the effect of noise scheduling on this trade-off, demonstrating that with an appropriate choice of parameters and techniques, sampling time can be significantly reduced with a minor increase in SWD and SER. Finally, we show that the DM can generate a correlated fading channel, whereas a strong GAN variant fails to learn the covariance. This paper highlights the potential benefits of using DMs for learning channel distributions, which could be further investigated for various channels and advanced techniques of DMs.
翻译:暂无翻译