We present a holistic approach to building a robust and useful natural language classification system for real-world content moderation. The success of such a system relies on a chain of carefully designed and executed steps, including the design of content taxonomies and labeling instructions, data quality control, an active learning pipeline to capture rare events, and a variety of methods to make the model robust and to avoid overfitting. Our moderation system is trained to detect a broad set of categories of undesired content, including sexual content, hateful content, violence, self-harm, and harassment. This approach generalizes to a wide range of different content taxonomies and can be used to create high-quality content classifiers that outperform off-the-shelf models.
翻译:我们提出了一个全面的方法来建立一个强大和有用的自然语言分类系统,以适应现实世界内容的节制。这样一个系统的成功取决于一系列精心设计和实施的步骤,包括内容分类和标签指示的设计、数据质量控制、记录稀有事件的积极学习管道以及使模型稳健和避免过度适应的各种方法。我们的节制系统受过培训,能够发现一系列广泛的不受欢迎的内容,包括性内容、仇恨内容、暴力、自我伤害和骚扰。这个方法概括了各种各样的内容分类,可以用来创建超越现成模式的高质量内容分类器。