The Electrocardiogram (ECG) measures the electrical cardiac activity generated by the heart to detect abnormal heartbeat and heart attack. However, the irregular occurrence of the abnormalities demands continuous monitoring of heartbeats. Machine learning techniques are leveraged to automate the task to reduce labor work needed during monitoring. In recent years, many companies have launched products with ECG monitoring and irregular heartbeat alert. Among all classification algorithms, the time series-based algorithm dynamic time warping (DTW) is widely adopted to undertake the ECG classification task. Though progress has been achieved, the DTW-based ECG classification also brings a new attacking vector of leaking the patients' diagnosis results. This paper shows that the ECG input samples' labels can be stolen via a side-channel attack, Flush+Reload. In particular, we first identify the vulnerability of DTW for ECG classification, i.e., the correlation between warping path choice and prediction results. Then we implement an attack that leverages Flush+Reload to monitor the warping path selection with known ECG data and then build a predictor for constructing the relation between warping path selection and labels of input ECG samples. Based on experiments, we find that the Flush+Reload-based inference leakage can achieve an 84.0\% attacking success rate to identify the labels of the two samples in DTW.


翻译:心电图(ECG)测量心脏产生的电活动以侦测异常心跳和心脏病发作。然而,异常发生的情况要求连续监测心跳。机器学习技术被利用自动化任务,以减少监测所需的人力工作。近年来,许多公司推出了具有ECG监测和不规则心跳警报的产品。在所有分类算法中,基于时间序列的算法动态时间规整(DTW)被广泛采用来执行ECG分类任务。虽然已取得进展,但基于DTW的ECG分类也带来了新的攻击向量,即泄露患者的诊断结果。本文展示了通过一个侧信道攻击Flush+Reload,可以窃取ECG输入样本的标签。具体而言,我们首先确定DTW的漏洞,即变形路径选择和预测结果之间的相关性。然后我们实现一个攻击,利用Flush+Reload监视变形路径选择与已知的ECG数据,然后构建预测器来构造变形路径选择和输入ECG样本标签之间的关系。基于实验,我们发现,Flush+Reload的推断泄露可以实现84.0%的攻击成功率,以识别DTW中两个样本的标签。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
158+阅读 · 2020年1月16日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
机器学习线性代数速查
机器学习研究会
18+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
Arxiv
26+阅读 · 2019年3月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
机器学习线性代数速查
机器学习研究会
18+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员