In this paper we present a novel arbitrary-order discrete de Rham (DDR) complex on general polyhedral meshes based on the decomposition of polynomial spaces into ranges of vector calculus operators and complements linked to the spaces in the Koszul complex. The DDR complex is fully discrete, meaning that both the spaces and discrete calculus operators are replaced by discrete counterparts, and satisfies suitable exactness properties depending on the topology of the domain. In conjunction with bespoke discrete counterparts of $L^2$-products, it can be used to design schemes for partial differential equations that benefit from the exactness of the sequence but, unlike classical (e.g., Raviart--Thomas--N\'ed\'elec) finite elements, are nonconforming. We prove a complete panel of results for the analysis of such schemes: exactness properties, uniform Poincar\'e inequalities, as well as primal and adjoint consistency. We also show how this DDR complex enables the design of a numerical scheme for a magnetostatics problem, and use the aforementioned results to prove stability and optimal error estimates for this scheme.
翻译:在本文中,我们根据将多元空间分解成矢量微积分操作员和与Koszul综合体空间相连的附加物,对普通多面体外的多面体外(DDR)综合体提出一个新的任意分级。DDR综合体是完全分立的,这意味着空间和离散微积分操作员都被离散的对应体所取代,并且根据域的地形而满足适当的精确性。与分立的对等体$L ⁇ 2美元产品一道,它可以用来设计部分差异方程式,从序列的精确性中获益,但不同于古典(例如Raviart-Thomas-N\'ed\'elec)的限定性要素,它们不相容。我们证明,分析这种计划的结果是完整的小组:精确性特性、统一的Poincar\'e不平等,以及原始和共同的一致性。我们还表明,DDRDR综合体能综合体能是如何设计出一个因磁性差问题而受益的数字性计划的设计方法的,并且使用上述最佳的稳定性和结果来证明。