Facial motion retargeting is an important problem in both computer graphics and vision, which involves capturing the performance of a human face and transferring it to another 3D character. Learning 3D morphable model (3DMM) parameters from 2D face images using convolutional neural networks is common in 2D face alignment, 3D face reconstruction etc. However, existing methods either require an additional face detection step before retargeting or use a cascade of separate networks to perform detection followed by retargeting in a sequence. In this paper, we present a single end-to-end network to jointly predict the bounding box locations and 3DMM parameters for multiple faces. First, we design a novel multitask learning framework that learns a disentangled representation of 3DMM parameters for a single face. Then, we leverage the trained single face model to generate ground truth 3DMM parameters for multiple faces to train another network that performs joint face detection and motion retargeting for images with multiple faces. Experimental results show that our joint detection and retargeting network has high face detection accuracy and is robust to extreme expressions and poses while being faster than state-of-the-art methods.


翻译:在计算机图形和视觉中,畸形运动重新定位都是一个重要问题,它涉及捕捉一个人脸的性能并将其转移到另一个3D字符。从 2D 图像中学习3D 变形模型(3DMM) 参数在2D 面部神经网络中很常见,3D 面部重建等。但是,现有的方法要么在重新定位之前需要额外的面部检测步骤,要么使用一个单独的网络级联以进行检测,然后按顺序重新定位。在本文中,我们提出了一个单一端对端网络,以联合预测捆绑框位置和3DMM多面部3参数。首先,我们设计了一个新的多任务学习框架,为单一面部面部学习3DM参数的分解表达方式。然后,我们利用经过训练的单一面部位模型来生成多面部的地面真象3DM参数,以训练另一个网络,对多个面部图像进行联合面部探测和运动重新定位。实验结果显示,我们的联合检测和重新定位网络具有很高的面部探测准确性,并且能够对极端表现和姿势。

4
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉领域顶会CVPR 2018 接受论文列表
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉领域顶会CVPR 2018 接受论文列表
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员