We present an adaptive multilevel Monte Carlo (AMLMC) algorithm for approximating deterministic, real-valued, bounded linear functionals that depend on the solution of a linear elliptic PDE with a lognormal diffusivity coefficient and geometric singularities in bounded domains of $\mathbb{R}^d$. Our AMLMC algorithm is built on the results of the weak convergence rates in the work [Moon et al., BIT Numer. Math., 46 (2006), 367-407] for an adaptive algorithm using isoparametric d-linear quadrilateral finite element approximations and the dual weighted residual error representation in a deterministic setting. Designed to suit the geometric nature of the singularities in the solution, our AMLMC algorithm uses a sequence of deterministic, non-uniform auxiliary meshes as a building block. The deterministic adaptive algorithm generates these meshes, corresponding to a geometrically decreasing sequence of tolerances. For a given realization of the diffusivity coefficient and accuracy level, AMLMC constructs its approximate sample using the first mesh in the hierarchy that satisfies the corresponding bias accuracy constraint. This adaptive approach is particularly useful for the lognormal case treated here, which lacks uniform coercivity and thus produces functional outputs that vary over orders of magnitude when sampled. We discuss iterative solvers and compare their efficiency with direct ones. To reduce computational work, we propose a stopping criterion for the iterative solver with respect to the quantity of interest, the realization of the diffusivity coefficient, and the desired level of AMLMC approximation. From the numerical experiments, based on a Fourier expansion of the coefficient field, we observe improvements in efficiency compared with both standard Monte Carlo and standard MLMC for a problem with a singularity similar to that at the tip of a slit modeling a crack.


翻译:我们展示了一个适应性多层次的蒙特卡洛(AMLMC)算法,用于匹配确定性、真实价值、约束性线性功能,该算法取决于线性椭圆形 PDE 的解决方案,其边际域为正对异差系数和几何异异异差。我们的AMLMC算法以工作趋同率疲软的结果为基础[Moon 等人,BIT Numer. Math., 46(2006年) 367-407],该算法使用等离子度d线性四边际定数要素近似值和在确定性环境下的双重加权剩余误差表示。我们的AMLMC算法的设计是为了适应解决方案中奇异异数的几何性质。我们用极异数异的数值表示其精确度的精确度。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
36+阅读 · 2021年7月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员