Stochastic PDE eigenvalue problems often arise in the field of uncertainty quantification, whereby one seeks to quantify the uncertainty in an eigenvalue, or its eigenfunction. In this paper we present an efficient multilevel quasi-Monte Carlo (MLQMC) algorithm for computing the expectation of the smallest eigenvalue of an elliptic eigenvalue problem with stochastic coefficients. Each sample evaluation requires the solution of a PDE eigenvalue problem, and so tackling this problem in practice is notoriously computationally difficult. We speed up the approximation of this expectation in four ways: we use a multilevel variance reduction scheme to spread the work over a hierarchy of FE meshes and truncation dimensions; we use QMC methods to efficiently compute the expectations on each level; we exploit the smoothness in parameter space and reuse the eigenvector from a nearby QMC point to reduce the number of iterations of the eigensolver; and we utilise a two-grid discretisation scheme to obtain the eigenvalue on the fine mesh with a single linear solve. The full error analysis of a basic MLQMC algorithm is given in the companion paper [Gilbert and Scheichl, 2022], and so in this paper we focus on how to further improve the efficiency and provide theoretical justification for using nearby QMC points and two-grid methods. Numerical results are presented that show the efficiency of our algorithm, and also show that the four strategies we employ are complementary.
翻译:在不确定性量化方面,经常出现Stochatic PDE egenvaly问题,人们试图用数量化的方法来量化一个电子值或其元功能中的不确定性。在本文中,我们提出了一个高效的多层次准蒙特卡洛(MLQMC)算法,用于计算使用随机系数计算一个椭圆性电子值问题最小的半数值的预期值。每次抽样评估都需要解决一个PDE egenvaly问题,因此在实践中解决这一问题很难进行臭名昭著的计算。我们用四种方式加快这一期望的接近率:我们使用一个多层次的减少差异计划,将工作分散到FEmeshes和 truncation层面的等级上;我们使用QMC方法来高效地计算每个层次的期望值;我们利用参数空间的光滑度和再利用附近的QMC点的源源再利用,以减少所展示的反复值数量;我们使用一个两格的离解计划,用单一线性纸面的计算法和Schmildal-ral 分析我们如何在纸面上更精确地展示了纸面的计算结果。