The extreme learning machine (ELM) method can yield highly accurate solutions to linear/nonlinear partial differential equations (PDEs), but requires the last hidden layer of the neural network to be wide to achieve a high accuracy. If the last hidden layer is narrow, the accuracy of the existing ELM method will be poor, irrespective of the rest of the network configuration. In this paper we present a modified ELM method, termed HLConcELM (hidden-layer concatenated ELM), to overcome the above drawback of the conventional ELM method. The HLConcELM method can produce highly accurate solutions to linear/nonlinear PDEs when the last hidden layer of the network is narrow and when it is wide. The new method is based on a type of modified feedforward neural networks (FNN), termed HLConcFNN (hidden-layer concatenated FNN), which incorporates a logical concatenation of the hidden layers in the network and exposes all the hidden nodes to the output-layer nodes. HLConcFNNs have the interesting property that, given a network architecture, when additional hidden layers are appended to the network or when extra nodes are added to the existing hidden layers the representation capacity of the HLConcFNN associated with the new architecture is guaranteed to be not smaller than that of the original network architecture. Here representation capacity refers to the set of all functions that can be exactly represented by the neural network of a given architecture. We present ample benchmark tests with linear/nonlinear PDEs to demonstrate the computational accuracy and performance of the HLConcELM method and the superiority of this method to the conventional ELM from previous works.
翻译:极端学习机器( ELM) 方法可以为线性/ 非线性部分方程式( PDEs) 带来非常精确的解决方案, 但要求神经网络的最后隐藏层要宽度, 以便达到高精度。 如果最后隐藏层窄, 现有的 ELM 方法的准确性将较差, 不论网络配置的其余部分。 在本文中, 我们提出了一个修改的 ELM 方法, 名为 HLConcelM( 隐藏层连接 ELM), 以克服常规 ELM 方法( PDE) 的上述缺陷。 当网络的最后隐藏层窄度和宽度时, HLConcELM 方法可以为线性/ 非线性化的线性能提供了非常精确的解决方案。 当 HLConFND 网络的隐藏层结构不是以隐藏的, 当 HLFNF 的隐藏的网络结构的功能是额外的时, 当 HL 的隐藏的网络结构是额外的, 当 HL 的隐藏的网络结构的特性是额外的, 当 HL 的隐藏的隐藏的网络结构是额外的结构的, 当 HLMNFNU 的隐藏的特性是额外的结构的特性是额外的结构时, 。