Robot manipulation of rope-like objects is an interesting problem that has some critical applications, such as autonomous robotic suturing. Solving for and controlling rope is difficult due to the complexity of rope physics and the challenge of building fast and accurate models of deformable materials. While more data-driven approaches have become more popular for finding controllers that learn to do a single task, there is still a strong motivation for a model-based method that could be used to solve a large variety of optimization problems. Towards this end, we introduced compliant, position-based dynamics (XPBD) to model rope-like objects. Using geometric constraints, the model can represent the coupling of shear/stretch and bend/twist effects. Of crucial importance is that our formulation is differentiable, which can solve parameter estimation problems and improve the matching of rope physics to real-life scenarios (i.e., the real-to-sim problem). For the generality of rope-like objects, two different solvers are proposed to handle the inextensible and extensible effects of varied material stiffness for the rope. We demonstrate our framework's robustness and accuracy on real-to-sim experimental setups using the Baxter robot and the da Vinci research kit (DVRK). Our work leads to a new path for robotic manipulation of the deformable rope-like object taking advantage of the ready-to-use gradients.
翻译:机械操纵像绳子的物体是一个有趣的问题,它有一些关键的应用,如自主机器人悬浮等。由于绳子物理学的复杂性以及建立快速和准确的变形材料模型的挑战,解决和控制绳子是困难的。虽然更多的数据驱动方法对寻找能够学会做一项单一任务的控制器越来越受欢迎,但是仍然有强烈的动机,采用基于模型的方法来解决各种优化问题。为此,我们引入了兼容性、基于位置的动态(XPBD)到像绳子一样的模型物体。使用几何限制,该模型可以代表剪切/伸缩和弯曲/弯曲效果的结合。至关重要的是,我们的配方是不同的,可以解决参数估算问题,使绳子物理与现实生活情景(即实际到现实问题)相匹配。关于像绳子一样的物体的一般性,我们建议两个不同的解答器来处理绳子形形形形形色的硬性物质效应的伸缩效应(XPBDDD)。我们展示了我们框架的坚固性/伸缩性,并展示了我们模型的硬性机率,并展示了我们对正的硬性研究的硬性研究,也就是的硬性机,从而将了我们对正的硬性地运用了对正的机,使机的机的机,将了我们的硬性地运用了我们的硬性研究。