Jensen's inequality is ubiquitous in measure and probability theory, statistics, machine learning, information theory and many other areas of mathematics and data science. It states that, for any convex function $f\colon K \to \mathbb{R}$ on a convex domain $K \subseteq \mathbb{R}^{d}$ and any random variable $X$ taking values in $K$, $\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$. In this paper, sharp upper and lower bounds on $\mathbb{E}[f(X)]$, termed "graph convex hull bounds", are derived for arbitrary functions $f$ on arbitrary domains $K$, thereby strongly generalizing Jensen's inequality. Establishing these bounds requires the investigation of the convex hull of the graph of $f$, which can be difficult for complicated $f$. On the other hand, once these inequalities are established, they hold, just like Jensen's inequality, for any random variable $X$. Hence, these bounds are of particular interest in cases where $f$ is fairly simple and $X$ is complicated or unknown. Both finite- and infinite-dimensional domains and codomains of $f$ are covered, as well as analogous bounds for conditional expectations and Markov operators.


翻译:图形凸包界作为广义的Jensen不等式 翻译摘要: Jensen不等式是测度和概率论、统计学、机器学习、信息论和数学数据科学等许多领域中普遍存在的一种不等式。它说明了对于凸函数$f \colon K \to \mathbb {R}$和值域为$ K \subseteq \mathbb {R} ^ {d}$的任意随机变量$X$,都有$\mathbb {E} [f (X)] \geq f (\mathbb {E} [X])$。本文为任意定义域$K$上的任意函数$f$推导出了sharp的上限和下限界,称为“图凸包界”,从而强化了Jensen不等式。确立这些界需要研究$f$的图形的凸包,这对于复杂的$f$可能很困难。另一方面,一旦建立了这些不等式,它们就像Jensen不等式一样对于任何随机变量$X$都成立。因此,在$f$相对简单且$X$复杂或未知的情况下,这些界特别有意义。本文涵盖了有限维和无限维域和值域的$f$,以及有关条件期望和马尔可夫算子的类似界。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员