Jensen's inequality is ubiquitous in measure and probability theory, statistics, machine learning, information theory and many other areas of mathematics and data science. It states that, for any convex function $f\colon K \to \mathbb{R}$ on a convex domain $K \subseteq \mathbb{R}^{d}$ and any random variable $X$ taking values in $K$, $\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$. In this paper, sharp upper and lower bounds on $\mathbb{E}[f(X)]$, termed "graph convex hull bounds", are derived for arbitrary functions $f$ on arbitrary domains $K$, thereby strongly generalizing Jensen's inequality. Establishing these bounds requires the investigation of the convex hull of the graph of $f$, which can be difficult for complicated $f$. On the other hand, once these inequalities are established, they hold, just like Jensen's inequality, for any random variable $X$. Hence, these bounds are of particular interest in cases where $f$ is fairly simple and $X$ is complicated or unknown. Both finite- and infinite-dimensional domains and codomains of $f$ are covered, as well as analogous bounds for conditional expectations and Markov operators.
翻译:图形凸包界作为广义的Jensen不等式
翻译摘要:
Jensen不等式是测度和概率论、统计学、机器学习、信息论和数学数据科学等许多领域中普遍存在的一种不等式。它说明了对于凸函数$f \colon K \to \mathbb {R}$和值域为$ K \subseteq \mathbb {R} ^ {d}$的任意随机变量$X$,都有$\mathbb {E} [f (X)] \geq f (\mathbb {E} [X])$。本文为任意定义域$K$上的任意函数$f$推导出了sharp的上限和下限界,称为“图凸包界”,从而强化了Jensen不等式。确立这些界需要研究$f$的图形的凸包,这对于复杂的$f$可能很困难。另一方面,一旦建立了这些不等式,它们就像Jensen不等式一样对于任何随机变量$X$都成立。因此,在$f$相对简单且$X$复杂或未知的情况下,这些界特别有意义。本文涵盖了有限维和无限维域和值域的$f$,以及有关条件期望和马尔可夫算子的类似界。