In the field of parametric partial differential equations, shape optimization represents a challenging problem due to the required computational resources. In this contribution, a data-driven framework involving multiple reduction techniques is proposed to reduce such computational burden. Proper orthogonal decomposition (POD) and active subspace genetic algorithm (ASGA) are applied for a dimensional reduction of the original (high fidelity) model and for an efficient genetic optimization based on active subspace property. The parameterization of the shape is applied directly to the computational mesh, propagating the generic deformation map applied to the surface (of the object to optimize) to the mesh nodes using a radial basis function (RBF) interpolation. Thus, topology and quality of the original mesh are preserved, enabling application of POD-based reduced order modeling techniques, and avoiding the necessity of additional meshing steps. Model order reduction is performed coupling POD and Gaussian process regression (GPR) in a data-driven fashion. The framework is validated on a benchmark ship.


翻译:在参数部分偏差方程领域,由于需要的计算资源,形状优化是一个具有挑战性的问题。在这一贡献中,提议了一个数据驱动框架,涉及多种减少技术,以减少这种计算负担。正正正正正正正正正正正(高度忠诚)模型和主动次空间遗传算法(ASGA)应用适当的正正正正分形分解(POD)和活性次空间属性基础上的有效遗传优化。形状的参数化直接应用于计算网目,利用辐射基函数(RBF)将适用于表面(优化对象)的通用变形图推广到网目节点(Mesh节点),从而保持原始网目的表层学和质量,使基于POD的减序模型技术得以应用,并避免额外网目步骤的必要性。示范订单的减少是以数据驱动的方式进行POD和Gossian进程回归(GPR)的组合。框架在基准船上得到验证。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
220+阅读 · 2020年6月5日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员