In the field of parametric partial differential equations, shape optimization represents a challenging problem due to the required computational resources. In this contribution, a data-driven framework involving multiple reduction techniques is proposed to reduce such computational burden. Proper orthogonal decomposition (POD) and active subspace genetic algorithm (ASGA) are applied for a dimensional reduction of the original (high fidelity) model and for an efficient genetic optimization based on active subspace property. The parameterization of the shape is applied directly to the computational mesh, propagating the generic deformation map applied to the surface (of the object to optimize) to the mesh nodes using a radial basis function (RBF) interpolation. Thus, topology and quality of the original mesh are preserved, enabling application of POD-based reduced order modeling techniques, and avoiding the necessity of additional meshing steps. Model order reduction is performed coupling POD and Gaussian process regression (GPR) in a data-driven fashion. The framework is validated on a benchmark ship.
翻译:在参数部分偏差方程领域,由于需要的计算资源,形状优化是一个具有挑战性的问题。在这一贡献中,提议了一个数据驱动框架,涉及多种减少技术,以减少这种计算负担。正正正正正正正正正正正(高度忠诚)模型和主动次空间遗传算法(ASGA)应用适当的正正正正分形分解(POD)和活性次空间属性基础上的有效遗传优化。形状的参数化直接应用于计算网目,利用辐射基函数(RBF)将适用于表面(优化对象)的通用变形图推广到网目节点(Mesh节点),从而保持原始网目的表层学和质量,使基于POD的减序模型技术得以应用,并避免额外网目步骤的必要性。示范订单的减少是以数据驱动的方式进行POD和Gossian进程回归(GPR)的组合。框架在基准船上得到验证。