This paper focuses on the trajectory tracking control problem for an articulated unmanned ground vehicle. We propose and compare two approaches in terms of performance and computational complexity. The first uses a nonlinear mathematical model derived from first principles and combines a nonlinear model predictive controller (NMPC) with a nonlinear moving horizon estimator (NMHE) to produce a control strategy. The second is based on an input-state linearization (ISL) of the original model followed by linear model predictive control (LMPC). A fast real-time iteration scheme is proposed, implemented for the NMHE-NMPC framework and benchmarked against the ISL-LMPC framework, which is a traditional and cheap method. The experimental results for a time-based trajectory show that the NMHE-NMPC framework with the proposed real-time iteration scheme gives better trajectory tracking performance than the ISL-LMPC framework and the required computation time is feasible for real-time applications. Moreover, the ISL-LMPC produces results of a quality comparable to the NMHE-NMPC framework at a significantly reduced computational cost.
翻译:本文侧重于一个清晰的无人驾驶地面飞行器的轨迹跟踪控制问题。我们从性能和计算复杂性的角度提出并比较了两种方法。首先,我们使用从第一条原则得出的非线性数学模型,并将非线性模型预测控制器(NMPC)与非线性移动地平线估计仪(NMHE)结合起来,以制定控制战略;其次,我们以原模型的输入状态线性化(ISL)为基础,然后以线性模型预测控制(LMPC)为基础。我们提出了一个快速实时迭代计划,为NMHE-NMPC框架实施,并参照ISL-LMPC框架作为基准,这是一种传统和廉价的方法。一个基于时间的轨迹的实验结果显示,NMHE-NMPC框架与拟议的实时迭代计划相比,轨迹跟踪业绩的更好,实时应用所需的计算时间是可行的。此外,ISL-LMPC还提出了与NHE-NMPC框架相比,计算成本大大降低。