We present efficient reduced basis (RB) methods for the simulation of the coupled problem consisting of a rigid robot hand interacting with soft tissue material which is modeled by the linear elasticity equation and discretized with the Finite Element Method. We look at two different scenarios: (i) the forward simulation and (ii) a feedback control formulation of the model. In both cases, large-scale systems of equations appear, which need to be solved in real-time. This is essential in practice for the implementation in a real robot. For the feedback-scenario, in the context of the linear quadratic regulator, we encounter a high-dimensional Algebraic Riccati Equation (ARE). To overcome the real-time constraint by significantly reducing the computational complexity, we use several structure-preserving and non-structure-preserving reduction methods. These include proper orthogonal decomposition-based reduced basis techniques. For the ARE, instead of solving a full dimensional problem we compute a low-rank-factor and hence a low-dimensional ARE is solved. Numerical examples for both cases are provided. These illustrate the approximation quality of the reduced solution and speedup factors of the different reduction approaches.


翻译:我们提出了由硬性机器人手与软组织材料互动的模拟问题的有效降低基数(RB)方法,模拟问题由硬性机器人手与软组织材料相互作用组成,该软组织材料以线性弹性方程式为模型,并与精度元素法分离。我们审视了两种不同的情景:(一) 前方模拟和(二) 模型的反馈控制配方。在这两种情形中,大型方程式系统出现,需要实时解决。这对于在真正的机器人中执行来说至关重要。对于反馈-情景,在线性二次调节中,我们遇到高维的阿尔格布拉里里里里-里卡蒂量化(ARE) 。为了通过大幅降低计算复杂性来克服实时限制,我们使用了几种结构保留和非结构保存的削减方法。这些方法包括以适当或图层分解定位为基础的降低基数技术。对于ARE来说,不是解决一个全维问题,而是我们计算低级方位因素,因此一个低度区域区域是解决的。提供了两种案例的数值示例。为这两个案例提供了数值示例,以降低速度因素的接近率。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
缺失数据统计分析,第三版,462页pdf
专知会员服务
109+阅读 · 2020年2月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
缺失数据统计分析,第三版,462页pdf
专知
47+阅读 · 2020年2月28日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
缺失数据统计分析,第三版,462页pdf
专知会员服务
109+阅读 · 2020年2月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
缺失数据统计分析,第三版,462页pdf
专知
47+阅读 · 2020年2月28日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员