Current state-of-the-art object detectors can have significant performance drop when deployed in the wild due to domain gaps with training data. Unsupervised Domain Adaptation (UDA) is a promising approach to adapt models for new domains/environments without any expensive label cost. However, without ground truth labels, most prior works on UDA for object detection tasks can only perform coarse image-level and/or feature-level adaptation by using adversarial learning methods. In this work, we show that such adversarial-based methods can only reduce the domain style gap, but cannot address the domain content distribution gap that is shown to be important for object detectors. To overcome this limitation, we propose the Cross-Domain Semi-Supervised Learning (CDSSL) framework by leveraging high-quality pseudo labels to learn better representations from the target domain directly. To enable SSL for cross-domain object detection, we propose fine-grained domain transfer, progressive-confidence-based label sharpening and imbalanced sampling strategy to address two challenges: (i) non-identical distribution between source and target domain data, (ii) error amplification/accumulation due to noisy pseudo labeling on the target domain. Experiment results show that our proposed approach consistently achieves new state-of-the-art performance (2.2% - 9.5% better than prior best work on mAP) under various domain gap scenarios. The code will be released.


翻译:在野外部署的当前最新天体探测器,由于培训数据存在领域差距,其性能可能显著下降。无监督域适应(UDA)是一种大有希望的方法,用于改造新域/环境的模式,而无需昂贵的标签成本。然而,如果没有地面真相标签,在UDA进行天体探测任务的大部分先前工作只能通过使用对抗式学习方法进行粗略的图像水平和/或特征水平的调整。在这项工作中,我们表明,这种以对抗性基点为基础的方法只能缩小域样式差距,但无法解决显示对物体探测器十分重要的域内内容分布差距。为了克服这一限制,我们建议采用跨域半超光学类学习(CDSSL)框架,利用高质量的假名标签直接从目标域内学习更好的表述。为了让 SSLL 能够进行跨域天体探测,我们建议微小的域域转移,基于累进信任基点的标签更清晰和不平衡的取样战略,以应对两个挑战:(i)源域内数据与目标域内数据不相同的分布。(ii)为了克服这一限制,我们最佳域域域域域内定位前的优化定位,将显示我们最佳域域域内定位的改进的校正定位,将显示新的域内结果。

1
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Top
微信扫码咨询专知VIP会员