Edit distance is an important measure of string similarity. It counts the number of insertions, deletions and substitutions one has to make to a string $x$ to get a string $y$. In this paper we design an almost linear-size sketching scheme for computing edit distance up to a given threshold $k$. The scheme consists of two algorithms, a sketching algorithm and a recovery algorithm. The sketching algorithm depends on the parameter $k$ and takes as input a string $x$ and a public random string $\rho$ and computes a sketch $sk_{\rho}(x;k)$, which is a digested version of $x$. The recovery algorithm is given two sketches $sk_{\rho}(x;k)$ and $sk_{\rho}(y;k)$ as well as the public random string $\rho$ used to create the two sketches, and (with high probability) if the edit distance $ED(x,y)$ between $x$ and $y$ is at most $k$, will output $ED(x,y)$ together with an optimal sequence of edit operations that transforms $x$ to $y$, and if $ED(x,y) > k$ will output LARGE. The size of the sketch output by the sketching algorithm on input $x$ is $k{2^{O(\sqrt{\log(n)\log\log(n)})}}$ (where $n$ is an upper bound on length of $x$). The sketching and recovery algorithms both run in time polynomial in $n$. The dependence of sketch size on $k$ is information theoretically optimal and improves over the quadratic dependence on $k$ in schemes of Kociumaka, Porat and Starikovskaya (FOCS'2021), and Bhattacharya and Kouck\'y (STOC'2023).
翻译:暂无翻译