Edit distance is an important measure of string similarity. It counts the number of insertions, deletions and substitutions one has to make to a string $x$ to get a string $y$. In this paper we design an almost linear-size sketching scheme for computing edit distance up to a given threshold $k$. The scheme consists of two algorithms, a sketching algorithm and a recovery algorithm. The sketching algorithm depends on the parameter $k$ and takes as input a string $x$ and a public random string $\rho$ and computes a sketch $sk_{\rho}(x;k)$, which is a digested version of $x$. The recovery algorithm is given two sketches $sk_{\rho}(x;k)$ and $sk_{\rho}(y;k)$ as well as the public random string $\rho$ used to create the two sketches, and (with high probability) if the edit distance $ED(x,y)$ between $x$ and $y$ is at most $k$, will output $ED(x,y)$ together with an optimal sequence of edit operations that transforms $x$ to $y$, and if $ED(x,y) > k$ will output LARGE. The size of the sketch output by the sketching algorithm on input $x$ is $k{2^{O(\sqrt{\log(n)\log\log(n)})}}$ (where $n$ is an upper bound on length of $x$). The sketching and recovery algorithms both run in time polynomial in $n$. The dependence of sketch size on $k$ is information theoretically optimal and improves over the quadratic dependence on $k$ in schemes of Kociumaka, Porat and Starikovskaya (FOCS'2021), and Bhattacharya and Kouck\'y (STOC'2023).


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年7月29日
Arxiv
0+阅读 · 2024年7月26日
Arxiv
0+阅读 · 2024年7月24日
Arxiv
0+阅读 · 2024年7月24日
Arxiv
0+阅读 · 2024年7月22日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2024年7月29日
Arxiv
0+阅读 · 2024年7月26日
Arxiv
0+阅读 · 2024年7月24日
Arxiv
0+阅读 · 2024年7月24日
Arxiv
0+阅读 · 2024年7月22日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员