We analyze the stability of (strong) laws of large numbers in Hadamard spaces with respect to distributional perturbations. For the inductive means of a sequence of independent, but not necessarily identically distributed random variables, we provide a concentration inequality in quadratic mean, as well as a strong law of large numbers, generalizing a classical result of K.-T. Sturm. For the Fr\'echet mean, we generalize H. Ziezold's law of large numbers in Hadamard spaces. In this case, we neither require our data to be independent, nor identically distributed; reasonably mild conditions on the first two moments of our sample are enough. Additionally, we look at data contamination via a model inspired by Huber's $\varepsilon$-contamination model, in which we replace a random portion of the data with noise. In the most general setup, we do neither require the data, nor the noise to be i.i.d., nor do we require the noise to be independent of the data. To analyze the stability of the (non-symmetric) inductive mean with respect to data loss, data permutation, and noise, a resampling scheme is introduced, and sufficient conditions for its convergence are provided. These results suggest that means in Hadamard spaces are as robust as in Euclidean spaces. This is underlined by a small simulation study, in which we compare the robustness of means on the manifold of positive definite matrices, with means on open books.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
19+阅读 · 2021年2月4日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
31+阅读 · 2021年6月30日
Arxiv
19+阅读 · 2021年2月4日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员