We analyze a semi-explicit time discretization scheme of first order for poro\-elasticity with nonlinear permeability provided that the elasticity model and the flow equation are only weakly coupled. The approach leads to a decoupling of the equations and, at the same time, linearizes the nonlinearity without the need of further inner iteration steps. Hence, the computational speed-up is twofold without a loss in the convergence rate. We prove optimal first-order error estimates by considering a related delay system and investigate the method numerically for different examples with various types of nonlinear displacement-permeability relations.
翻译:我们分析一个半显性的时间分解方案,即对浮质/弹性的第一顺序和非线性渗透性的半显性分解方案,条件是弹性模型和流动方程式的连接弱。该方法导致方程式脱钩,同时将非线性线性线性线性线性线分解,而不需要进一步的内迭代步骤。因此,计算速度是双倍,而汇合率没有损失。我们通过考虑相关的延迟系统来证明最理想的第一阶误差估计,并用数字方法调查与非线性迁移-渗透性关系不同类型的不同实例的方法。