In this study we present a non-overlapping Schwarz waveform relaxation (SWR) method applied to a one dimensional model problem representative of the coupling between the ocean and the atmosphere. This problem includes nonlinear interface conditions analogous to a quadratic friction law. We study the convergence of the corresponding SWR at a semi-discrete level for a linear friction and for a linearized quadratic friction at the interface. Using numerical experiments we show that the convergence properties in the linearized quadratic friction case are very close to the ones obtained with the full nonlinear problem for the range of parameter values of interest. We investigate the possibility to improve the convergence speed by adding a relaxation parameter at the interface.
翻译:在此研究中,我们展示了一种不重叠的施瓦兹波形放松法(SWR)方法,该方法适用于代表海洋与大气层之间交错的一维模型问题,包括类似于二次摩擦法的非线性界面条件。我们研究了相应的SWR在线性摩擦和在界面线性二次摩擦的半分层水平上的趋同情况。我们利用数字实验表明,线性二次摩擦案的趋同特性非常接近于在相关参数值范围方面与完全非线性问题相匹配的模型。我们研究了通过在界面增加一个放松参数来提高趋同速度的可能性。