This paper is focused on the approximation of the Euler equation of compressible fluid dynamics on a staggered mesh. To this aim, the flow parameter are described by the velocity, the density and the internal energy. The thermodynamic quantities are described on the elements of the mesh, and this the approximation is only $L^2$, while the kinematic quantities are globally continuous. The method is general in the sense that the thermodynamical and kinetic parameters are described by arbitrary degree polynomials, in practice the difference between the degrees of the kinematic parameters and the thermodynamical ones is equal to $1$. The integration in time is done using a defect correction method. As such, there is no hope that the limit solution, if it exists, will be a weak solution of the problem. In order to guaranty this property, we introduce a general correction method in the spirit of the Lagrangian stagered method described in \cite{Svetlana,MR4059382, MR3023731}, and we prove a Lax Wendroff theorem. The proof is valid for multidimensional version of the scheme, though all the numerical illustrations, on classical benchmark problems, are all one dimensional because we have an easy access to the exact solution for comparison. We conclude by explanning that the method is general and can be used in a different setting as the specific one used here, for example finite volume, of discontinuous Galerkin methods.


翻译:本文侧重于一个交错网格的压缩流体动态的 Euler 方程式的近似值。 为此, 流动参数由速度、 密度和内部能量来描述。 热力量数量在网状元素中被描述, 而这个近似值仅为$L ⁇ 2$, 而运动量在全球范围是连续的。 这个方法很笼统, 其含义是, 热力和动能参数是由任意度多位数描述的, 在实践中, 运动力参数和热力参数的程度之间的差别等于$。 时间整合是用缺陷校正方法来完成的。 因此, 如果存在, 则没有希望限量解决方案将是一个薄弱的解决问题的解决方案。 为了测量这一属性, 我们引入了一种总体的校正方法, 在此处描述的任意度多位数 {Svetlana {, MRM40592, MR3023731}, 并且我们证明一个Lax Wendroff 的不透明性参数的整合方法, 因为我们使用了一个常规方法的精确度模型, 我们使用了一个精确度模型的校正解方法的校准了一个模型。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年11月21日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月25日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员