In this paper we develop a fully nonconforming virtual element method (VEM) of arbitrary approximation order for the two dimensional Cahn-Hilliard equation. We carry out the error analysis for the continuous-in-time scheme and verify the theoretical convergence result via numerical experiments. We present a fully discrete scheme which uses a convex splitting Runge-Kutta method to discretize in the temporal variable alongside the virtual element spatial discretization.
翻译:在本文中,我们为两个维度卡恩-希利亚德方程式开发了完全不兼容的任意近似近似顺序虚拟元件方法(VEM)。我们为连续时间计划进行错误分析,并通过数字实验核实理论趋同结果。我们提出了一个完全分离的系统,它使用连接分解龙格-库塔法将时间变量与虚拟元素空间离散分开。