This paper proposes a new test of overidentifying restrictions (called the Q test) with high-dimensional data. This test is based on estimation and inference for a quadratic form of high-dimensional parameters. It is shown to have the desired asymptotic size and power properties under heteroskedasticity, even if the number of instruments and covariates is larger than the sample size. Simulation results show that the new test performs favorably compared to existing alternative tests (Chao et al., 2014; Kolesar, 2018; Carrasco and Doukali, 2021) under the scenarios when those tests are feasible or not. An empirical example of the trade and economic growth nexus manifests the usefulness of the proposed test.
翻译:本文件建议用高维数据对高维数据进行新的识别限制测试(称为Q测试),该测试以高维参数的二次形式的估计和推断为基础,显示其具有所希望的无症状大小和功率特性,且具有异度,即使仪器和共变器的数量大于样本大小。 模拟结果表明,新测试与现有替代测试相比效果良好(Chao等人,2014年;Kolesar,2018年;Carrasco和Doukali,2021年,在可行或不可行的情况下。 贸易和经济增长关系的经验实例显示了拟议测试的有用性。