There are several isomorphic constructions for the irreducible polynomial representations of the general linear group in characteristic zero. The two most well-known versions are called Schur modules and Weyl modules. Steven Sam used a Weyl module implementation in 2009 for his Macaulay2 package PieriMaps. This implementation can be used to compute so-called Young flattenings of polynomials. Over the Schur module basis Oeding and Farnsworth describe a simple combinatorial procedure that is supposed to give the Young flattening, but their construction is not equivariant. In this paper we clarify this issue, present the full details of the theory of Young flattenings in the Schur module basis, and give a software implementation in this basis. Using Reuven Hodges' recently discovered Young tableau straightening algorithm in the Schur module basis as a subroutine, our implementation outperforms Sam's PieriMaps implementation by several orders of magnitude on many examples, in particular for powers of linear forms, which is the case of highest interest for proving border Waring rank lower bounds.
翻译:对于普通线性组群的不可复制的多元面貌,在特质零下有几种形态的构造。 两个最著名的版本称为Schur模块和Weyl模块。 Steven Sam在2009年用Weyl模块实施他的Macaulay2套套件PierriMaps。 这个实施可以用来计算所谓的“青年多面体平板化”。 在Schur模块Oeding和Farnsworth的基础上,我们用几个数量级的顺序描述一个简单的组合程序,该程序本应该给年轻平板化,但其构造却不是等式的。 在本文中,我们澄清了这个问题,在Schur模块的基础上展示了年轻平板化理论的全部细节,并以此为基础提供了软件的实施。 用Reuven Hodge最近发现的Schur模块中的You Table平板平板平坦算法作为子的子,我们用几个数量级的顺序描述Sam PieriMaps的实施, 在许多例子中, 特别是线性形式的力量, 这是证明边界激烈程度最高的例子。