There are several isomorphic constructions for the irreducible polynomial representations of the general linear group in characteristic zero. The two most well-known versions are called Schur modules and Weyl modules. Steven Sam used a Weyl module implementation in 2009 for his Macaulay2 package PieriMaps. This implementation can be used to compute so-called Young flattenings of polynomials. Over the Schur module basis Oeding and Farnsworth describe a simple combinatorial procedure that is supposed to give the Young flattening, but their construction is not equivariant. In this paper we clarify this issue, present the full details of the theory of Young flattenings in the Schur module basis, and give a software implementation in this basis. Using Reuven Hodges' recently discovered Young tableau straightening algorithm in the Schur module basis as a subroutine, our implementation outperforms Sam's PieriMaps implementation by several orders of magnitude on many examples, in particular for powers of linear forms, which is the case of highest interest for proving border Waring rank lower bounds.


翻译:对于普通线性组群的不可复制的多元面貌,在特质零下有几种形态的构造。 两个最著名的版本称为Schur模块和Weyl模块。 Steven Sam在2009年用Weyl模块实施他的Macaulay2套套件PierriMaps。 这个实施可以用来计算所谓的“青年多面体平板化”。 在Schur模块Oeding和Farnsworth的基础上,我们用几个数量级的顺序描述一个简单的组合程序,该程序本应该给年轻平板化,但其构造却不是等式的。 在本文中,我们澄清了这个问题,在Schur模块的基础上展示了年轻平板化理论的全部细节,并以此为基础提供了软件的实施。 用Reuven Hodge最近发现的Schur模块中的You Table平板平板平坦算法作为子的子,我们用几个数量级的顺序描述Sam PieriMaps的实施, 在许多例子中, 特别是线性形式的力量, 这是证明边界激烈程度最高的例子。

0
下载
关闭预览

相关内容

【干货书】图形学基础,427页pdf
专知会员服务
145+阅读 · 2020年7月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
0+阅读 · 2021年5月28日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员