The availability of large datasets composed of graphs creates an unprecedented need to invent novel tools in statistical learning for "graph-valued random variables". To characterize the "average" of a sample of graphs, one can compute the sample Fr\'echet mean. Because the sample mean should provide an interpretable summary of the graph sample, one would expect that the structural properties of the sample be transmitted to the Fr\'echet mean. In this paper, we address the following foundational question: does the sample Fr\'echet mean inherit the structural properties of the graphs in the sample? Specifically, we prove the following result: the sample Fr\'echet mean of a set of sparse graphs is sparse. We prove the result for the graph Hamming distance, and the spectral adjacency pseudometric, using very different arguments. In fact, we prove a stronger result: the edge density of the sample Fr\'echet mean is bounded by the edge density of the graphs in the sample. This result guarantees that sparsity is an hereditary property, which can be transmitted from a graph sample to its sample Fr\'echet mean, irrespective of the method used to estimate the sample Fr\'echet mean.
翻译:由图表组成的大型数据集的可用性创造了前所未有的需要,在统计学学习中发明用于“ 绘图估价随机变量” 的新工具。 为了描述图表样本的“ 平均” 特征, 您可以计算样本 Fr\' echet 。 因为样本平均值应该提供图表样本的可解释摘要, 人们会期望样本的结构属性能够传输到 Fr\' echet 值。 在本文中, 我们处理以下基本问题: 样本 Fr\' echet 是否意味着继承样本中图表的结构属性? 具体地说, 我们证明以下结果: 一组稀薄图形的样本 Fr\'echet 值样本的样本 Fr\'echet 值是稀少的。 我们用非常不同的参数来证明图表 Hamming 距离的结果, 以及光谱相近的假称。 事实上, 我们证明一个更强烈的结果: 样本 Fr\' echet 值的边缘密度与样本的边缘密度是相连接的。 因此, 我们保证一个遗传属性, 能够从图表样本样本样本样本样本中传输到 Frchchechet 平均值。