The randomized singular value decomposition (SVD) is a popular and effective algorithm for computing a near-best rank $k$ approximation of a matrix $A$ using matrix-vector products with standard Gaussian vectors. Here, we generalize the theory of randomized SVD to multivariable Gaussian vectors, allowing one to incorporate prior knowledge of $A$ into the algorithm. This enables us to explore the continuous analogue of the randomized SVD for Hilbert--Schmidt (HS) operators using operator-function products with functions drawn from a Gaussian process (GP). We then construct a new covariance kernel for GPs, based on weighted Jacobi polynomials, which allows us to rapidly sample the GP and control the smoothness of the randomly generated functions. Numerical examples on matrices and HS operators demonstrate the applicability of the algorithm.
翻译:随机单值分解( SVD) 是使用标准高斯矢量的矩阵-矢量产品, 使用标准高斯矢量的矩阵- 矢量产品, 计算基质 $A 的近似值近似值的流行而有效的算法。 在此, 我们将随机 SVD 理论推广到可多变量的高斯矢量矢量, 允许一个人将以前对$A 的知识纳入算法中。 这使我们能够探索Hilbert- Schmidt (HS) 操作者随机SVD 的连续类比, 使用具有高斯进程函数的操作者/ 功能产品。 我们随后根据加权的 cobei 多元分子, 为 GP 建立一个新的常量内核, 使我们能够快速地取样GP, 控制随机生成函数的顺畅性。 矩阵和 HS 操作者的数值示例显示了算法的适用性 。