The randomized singular value decomposition (SVD) is a popular and effective algorithm for computing a near-best rank $k$ approximation of a matrix $A$ using matrix-vector products with standard Gaussian vectors. Here, we generalize the theory of randomized SVD to multivariable Gaussian vectors, allowing one to incorporate prior knowledge of $A$ into the algorithm. This enables us to explore the continuous analogue of the randomized SVD for Hilbert--Schmidt (HS) operators using operator-function products with functions drawn from a Gaussian process (GP). We then construct a new covariance kernel for GPs, based on weighted Jacobi polynomials, which allows us to rapidly sample the GP and control the smoothness of the randomly generated functions. Numerical examples on matrices and HS operators demonstrate the applicability of the algorithm.


翻译:随机单值分解( SVD) 是使用标准高斯矢量的矩阵-矢量产品, 使用标准高斯矢量的矩阵- 矢量产品, 计算基质 $A 的近似值近似值的流行而有效的算法。 在此, 我们将随机 SVD 理论推广到可多变量的高斯矢量矢量, 允许一个人将以前对$A 的知识纳入算法中。 这使我们能够探索Hilbert- Schmidt (HS) 操作者随机SVD 的连续类比, 使用具有高斯进程函数的操作者/ 功能产品。 我们随后根据加权的 cobei 多元分子, 为 GP 建立一个新的常量内核, 使我们能够快速地取样GP, 控制随机生成函数的顺畅性。 矩阵和 HS 操作者的数值示例显示了算法的适用性 。

0
下载
关闭预览

相关内容

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
机器学习速查手册,135页pdf
专知会员服务
340+阅读 · 2020年3月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
5+阅读 · 2018年11月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
The Completion of Covariance Kernels
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月15日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
机器学习速查手册,135页pdf
专知会员服务
340+阅读 · 2020年3月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
5+阅读 · 2018年11月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Top
微信扫码咨询专知VIP会员