Existing graph clustering networks heavily rely on a predefined graph and may fail if the initial graph is of low quality. To tackle this issue, we propose a novel graph augmentation clustering network capable of adaptively enhancing the initial graph to achieve better clustering performance. Specifically, we first integrate the node attribute and topology structure information to learn the latent feature representation. Then, we explore the local geometric structure information on the embedding space to construct an adjacency graph and subsequently develop an adaptive graph augmentation architecture to fuse that graph with the initial one dynamically. Finally, we minimize the Jeffreys divergence between multiple derived distributions to conduct network training in an unsupervised fashion. Extensive experiments on six commonly used benchmark datasets demonstrate that the proposed method consistently outperforms several state-of-the-art approaches. In particular, our method improves the ARI by more than 9.39\% over the best baseline on DBLP. The source codes and data have been submitted to the appendix.
翻译:现有的图形群集网络非常依赖预定义的图形, 如果初始图形质量低, 可能会失败 。 为了解决这个问题, 我们提议建立一个新型的图形增强群集网络, 能够适应性地增强初始图形, 从而取得更好的组合性能 。 具体地说, 我们首先整合节点属性和地形结构信息, 以学习潜在特征的表达方式 。 然后, 我们探索嵌入空间的本地几何结构信息, 以构建相邻图形, 并随后开发一个适应性图形增强架构, 以将该图形与初始的图像动态地连接起来 。 最后, 我们尽可能缩小多个衍生分布之间的 杰弗里差异, 以便以不受监督的方式进行网络培训 。 对六个常用基准数据集的广泛实验显示, 拟议的方法始终优于几种最先进的方法 。 特别是, 我们的方法比 DBLP 的最佳基线改进了9. 39 。 源代码和数据已提交附录 。