Onion routing provides anonymity by layering encryption so that no relay can link sender to destination. A quantum analogue faces a core obstacle: layered quantum encryption generally requires symmetric encryption schemes, whereas classically one would rely on public-key encryption. We propose a symmetric-encryption-based quantum onion routing (QOR) scheme by instantiating each layer with the abelian ideal class group action from the Theory of Complex Multiplication. Session keys are established locally via a Diffie-Hellman key exchange between neighbors in the chain of communication. Furthermore, we propose a novel ''non-local'' key exchange between the sender and receiver. The underlying problem remains hard even for quantum adversaries and underpins the security of current post-quantum schemes. We connect our construction to isogeny graphs and their association schemes, using the Bose-Mesner algebra to formalize commutativity and guide implementation. We give two implementation paths: (i) a universal quantum oracle evaluating the class group action with polynomially many quantum resources, and (ii) an intrinsically quantum approach via continuous-time quantum walks (CTQWs), outlined here and developed in a companion paper. A small Qiskit example illustrates the mechanics (by design, not the efficiency) of the QOR.
翻译:暂无翻译