The degree-restricted random process is a natural algorithmic model for generating graphs with degree sequence D_n=(d_1, \ldots, d_n): starting with an empty n-vertex graph, it sequentially adds new random edges so that the degree of each vertex v_i remains at most d_i. Wormald conjectured in 1999 that, for d-regular degree sequences D_n, the final graph of this process is similar to a uniform random d-regular graph. In this paper we show that, for degree sequences D_n that are not nearly regular, the final graph of the degree-restricted random process differs substantially from a uniform random graph with degree sequence D_n. The combinatorial proof technique is our main conceptual contribution: we adapt the switching method to the degree-restricted process, demonstrating that this enumeration technique can also be used to analyze stochastic processes (rather than just uniform random models, as before).
翻译:度限制随机过程是一种生成具有度序列 D_n= (d_ 1,\ldots, d_n) 的图形的自然算法模型:从空 n- 顶点图开始,它依次添加新的随机边缘,这样每个顶点 v_ i 的程度最多仍为 d_ i 。 1999年Wormald 预测,对于 d- 定期序列 D_n 来说,此过程的最后图形类似于一个统一的随机 d- 普通图形。 在本文中,我们显示,对于度序列 D_ n 来说,度限制随机过程的最后图形与带有度序列 D_ n 的统一随机图有很大差异。 组合校准技术是我们的主要概念贡献: 我们将切换方法调整到度限制过程, 表明这种查点技术也可以用来分析分解过程( 而不是像以前一样的统一随机模型 ) 。