The Multiple-try Metropolis (MTM) method is an interesting extension of the classical Metropolis-Hastings algorithm. However, theoretical understandings of its convergence behavior as well as whether and how it may help are still unknown. This paper derives the exact convergence rate for Multiple-try Metropolis Independent sampler (MTM-IS) via an explicit eigen analysis. As a by-product, we prove that MTM-IS is less efficient than the simpler approach of repeated independent Metropolis-Hastings method at the same computational cost. We further explore more variations and find it possible to design more efficient MTM algorithms by creating correlated multiple trials.


翻译:多宗大都会方法(MTM)是古典大都会-哈斯廷斯算法的一个有趣的延伸。 但是,对于其趋同行为以及是否和如何帮助的理论理解仍然未知。 本文通过明确的伊根分析得出了多宗大都会独立采样器(MTM-IS)的确切趋同率。 作为副产品,我们证明MTM-IS比以同样的计算成本重复独立大都会-哈斯廷斯方法的简单方法效率要低。 我们进一步探索更多的变异性,并发现通过创建相关多重试验来设计更高效的MTM算法是可能的。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月26日
Arxiv
0+阅读 · 2023年3月25日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月22日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关论文
Arxiv
0+阅读 · 2023年3月26日
Arxiv
0+阅读 · 2023年3月25日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员