We sometimes need to compute the most significant digits of the product of small integers with a multiplier requiring much storage: e.g., a large integer (e.g., $5^{100}$) or an irrational number ($\pi$). We only need to access the most significant digits of the multiplier-as long as the integers are sufficiently small. We provide an efficient algorithm to compute the range of integers given a truncated multiplier and a desired number of digits.
翻译:我们有时需要计算小整数与需要很多存储空间的乘数(如大整数(如$5^{100}$)或无理数($\pi$))的乘积的最高位数字。只要整数足够小,我们只需要访问乘数的最高位数字。我们提供了一种高效的算法,以计算给定截断乘数和所需数字的范围内的整数。