Microservice-based systems (MSS) may fail with various fault types. While existing AIOps methods excel at detecting abnormal traces and locating the responsible service(s), human efforts are still required for diagnosing specific fault types and failure causes.This paper presents TraFaultDia, a novel AIOps framework to automatically classify abnormal traces into fault categories for MSS. We treat the classification process as a series of multi-class classification tasks, where each task represents an attempt to classify abnormal traces into specific fault categories for a MSS. TraFaultDia leverages meta-learning to train on several abnormal trace classification tasks with a few labeled instances from a MSS, enabling quick adaptation to new, unseen abnormal trace classification tasks with a few labeled instances across MSS. TraFaultDia's use cases are scalable depending on how fault categories are built from anomalies within MSS. We evaluated TraFaultDia on two MSS, TrainTicket and OnlineBoutique, with open datasets where each fault category is linked to faulty system components (service/pod) and a root cause. TraFaultDia automatically classifies abnormal traces into these fault categories, thus enabling the automatic identification of faulty system components and root causes without manual analysis. TraFaultDia achieves 93.26% and 85.20% accuracy on 50 new classification tasks for TrainTicket and OnlineBoutique, respectively, when trained within the same MSS with 10 labeled instances per category. In the cross-system context, when TraFaultDia is applied to a MSS different from the one it is trained on, TraFaultDia gets an average accuracy of 92.19% and 84.77% for the same set of 50 new, unseen abnormal trace classification tasks of the respective systems, also with 10 labeled instances provided for each fault category per task in each system.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员