Adversarial robustness of deep learning models has gained much traction in the last few years. Various attacks and defenses are proposed to improve the adversarial robustness of modern-day deep learning architectures. While all these approaches help improve the robustness, one promising direction for improving adversarial robustness is un-explored, i.e., the complex topology of the neural network architecture. In this work, we answer the following question: "Can the complex topology of a neural network give adversarial robustness without any form of adversarial training?" empirically by experimenting with different hand-crafted and NAS based architectures. Our findings show that, for small-scale attacks, NAS-based architectures are more robust for small-scale datasets and simple tasks than hand-crafted architectures. However, as the dataset's size or the task's complexity increase, hand-crafted architectures are more robust than NAS-based architectures. We perform the first large scale study to understand adversarial robustness purely from an architectural perspective. Our results show that random sampling in the search space of DARTS (a popular NAS method) with simple ensembling can improve the robustness to PGD attack by nearly ~12\%. We show that NAS, which is popular for SoTA accuracy, can provide adversarial accuracy as a free add-on without any form of adversarial training. Our results show that leveraging the power of neural network topology with methods like ensembles can be an excellent way to achieve adversarial robustness without any form of adversarial training. We also introduce a metric that can be used to calculate the trade-off between clean accuracy and adversarial robustness.


翻译:在过去几年里,深层次的学习模式的Adversari 稳健性得到了很大的推动。 提出了各种攻击和防御方法来改进现代深层次学习结构的对抗性强健性。 虽然所有这些方法都有助于提高强健性, 但对于小型数据组和简单的任务而言,NAS的建筑比手工艺型结构更具有希望, 也就是神经网络结构的复杂地形学。 在这项工作中, 我们回答以下问题 : “ 一个神经网络的复杂地形能否在没有任何对抗性培训形式的情况下提供对抗性强健性? ” 通过实验不同的手工艺和NAS的架构,我们提出了各种实验性攻击和防御性防御。 我们的研究结果表明,对于小规模攻击,NAS的建筑结构对于小规模数据组和简单的任务来说,比手工艺型结构更为强大。 然而,随着数据组的大小或任务的复杂性增加,手工艺型结构比NAS的建筑型结构更加强大。 我们进行了第一次大规模的研究,以便从建筑的角度来理解敌对性强健美的强健性强健性研究。 我们的结果显示, 在搜索空间中随机的NART-S的准确性研究中,我们用了一个不那么干净的方法来显示,我们就可以用一个普通的系统来显示。

0
下载
关闭预览

相关内容

专知会员服务
27+阅读 · 2021年8月2日
专知会员服务
44+阅读 · 2020年10月31日
最新《深度强化学习中的迁移学习》综述论文
专知会员服务
153+阅读 · 2020年9月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Top
微信扫码咨询专知VIP会员