In this work, we present a method for landmark retrieval that utilizes global and local features. A Siamese network is used for global feature extraction and metric learning, which gives an initial ranking of the landmark search. We utilize the extracted feature maps from the Siamese architecture as local descriptors, the search results are then further refined using a cosine similarity between local descriptors. We conduct a deeper analysis of the Google Landmark Dataset, which is used for evaluation, and augment the dataset to handle various intra-class variances. Furthermore, we conduct several experiments to compare the effects of transfer learning and metric learning, as well as experiments using other local descriptors. We show that a re-ranking using local features can improve the search results. We believe that the proposed local feature extraction using cosine similarity is a simple approach that can be extended to many other retrieval tasks.
翻译:在这项工作中,我们提出了一个利用全球和地方特征进行里程碑式检索的方法。一个暹罗网络用于全球地物提取和计量学习,从而对里程碑式搜索进行初步排序。我们利用从暹罗结构中提取的地物图作为当地的描述符,然后利用地方描述符之间的共生相似性进一步改进搜索结果。我们对用于评估的Google Landmark数据集进行更深入的分析,并为处理不同类内差异而增加数据集。此外,我们进行了若干次实验,以比较转移式学习和计量式学习的效果,以及使用其他本地描述符进行的实验。我们表明,利用当地特征重新排序可以改进搜索结果。我们认为,使用共生相似性的拟议本地地物提取方法是一个简单的方法,可以扩展到许多其他的检索任务。