Deep generative learning cannot only be used for generating new data with statistical characteristics derived from input data but also for anomaly detection, by separating nominal and anomalous instances based on their reconstruction quality. In this paper, we explore the performance of three unsupervised deep generative models -- variational autoencoders (VAEs) with Gaussian, Bernoulli, and Boltzmann priors -- in detecting anomalies in flight-operations data of commercial flights consisting of multivariate time series. We devised two VAE models with discrete latent variables (DVAEs), one with a factorized Bernoulli prior and one with a restricted Boltzmann machine (RBM) as prior, because of the demand for discrete-variable models in machine-learning applications and because the integration of quantum devices based on two-level quantum systems requires such models. The DVAE with RBM prior, using a relatively simple -- and classically or quantum-mechanically enhanceable -- sampling technique for the evolution of the RBM's negative phase, performed better than the Bernoulli DVAE and on par with the Gaussian model, which has a continuous latent space. Our studies demonstrate the competitiveness of a discrete deep generative model with its Gaussian counterpart on anomaly-detection tasks. Moreover, the DVAE model with RBM prior can be easily integrated with quantum sampling by outsourcing its generative process to measurements of quantum states obtained from a quantum annealer or gate-model device.
翻译:Abstract: 深度生成学习既可以用于生成具有从输入数据中提取的统计特征的新数据,也可以用于异常检测,通过根据其重构质量将标准和异常实例分离。在本文中,我们探讨了三种无监督深度生成模型——具有高斯、伯努利和Boltzmann 先验的变分自编码器(VAEs)——在检测商用飞行的飞行操作数据中的异常性能。我们设计了两个具有离散潜变量(DVAEs)的VAE模型,其中一个是具有分解伯努利先验的模型,另一个是具有限制玻尔兹曼机(RBM)作为先验的模型,因为在机器学习应用中需要离散变量模型,并且由于基于二级量子系统的量子设备需要这样的模型。采用相对简单而且经典或量子机械可增强的采样技术对RBM的负相进行演化的DVAE模型表现优于伯努利DVAE,并与具有连续潜空间的高斯模型表现相当。我们的研究证明了离散深度生成模型在异常检测任务中与其高斯对应物的竞争力。此外,具有RBM先验的DVAE模型可以通过将其生成过程外包到从量子退火机或门模型设备获得的量子态的测量上,容易地与量子采样集成。