项目名称: 设备无关类量子随机数研究

项目编号: No.11304397

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 李宏伟

作者单位: 中国人民解放军信息工程大学

项目金额: 25万元

中文摘要: 真随机数在数值模拟和密码学等方面有着非常重要的应用,真随机数的产生应该是对任何人都是不可预测的,很难通过数学方法产生,现有的真随机数生成方案必须是基于不可预知的物理过程。但是随机数生成物理设备可能存在误差,甚至被窃听者所控制。而这些设备的非理想特性是不可控的,因此会降低生成随机数的可靠性。设备无关类协议不依赖于器件的可靠性,其量子态处理过程均可以认为是黑盒子。设备无关方案依赖于纠缠,不需要任何设备内部约束,通过Bell不等式的违反判定测量结果的随机性。而半设备无关方案依赖于单向态制备和态测量方案,需要限定设备维度,通过维度目击不等式的违反判定测量结果的随机性。相比较设备无关方案,半设备无关方案有着更简单的实验要求及更高的随机数生成效率。本项目研究量子非局域性度量方法,构造新型的设备无关和半设备无关随机数生成方案,证明不同方案之间的等价特性,并分析输出随机数的基本性质。

中文关键词: 设备无关;半设备无关;量子随机数;量子密钥分配;

英文摘要: Randomness is a valuable resource for applications ranging from cryptography to numerical simulation of physical. Random numbers, however, are difficult to characterize mathematically, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical modeling of such processes, possibly controlled by the eavesdropper, limit the reliability of random number generators in ways that are difficult to control. The device independent random number generation protocols require two black boxes, which are used for the quantum state processing. Based on quantum entanglement, the device independent protocol does not require any assumption about the internal working of the device. Randomness of the measurement outcome can be estimated by the Bell inequality violation and min-entropy function. The semi-device independent protocol requires two black boxes, which are used for the state preparation and measurement respectively, which assumes that the dimension of the system can be certified. Comparing with the device independent protocol, the semi-device independent protocol has much easier physical realization and much higher generation efficiency. In this project, we research on quantum nonlocal estimation method, construct new type of device independent protocols, prove the equivalence pro

英文关键词: device independent;semi device independent;quantum random number;quantum key distribution;

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】GearNet:弱监督领域自适应的逐步对偶学习
专知会员服务
24+阅读 · 2022年1月20日
【中科大】数值计算方法扩充课程,116页pdf
专知会员服务
76+阅读 · 2022年1月7日
【干货书】概率,统计与数据,513页pdf
专知会员服务
129+阅读 · 2021年11月27日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
110+阅读 · 2021年6月23日
【ICML2021】来自观察的跨域模仿
专知会员服务
17+阅读 · 2021年5月25日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
最新《理论计算科学导论》书稿,655页pdf
专知会员服务
100+阅读 · 2020年9月17日
自回归模型:PixelCNN
专知会员服务
25+阅读 · 2020年3月21日
语音识别的快速纠错模型FastCorrect系列来了!
微软研究院AI头条
1+阅读 · 2022年3月22日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
IBM推出127量子比特处理器,超越谷歌和中科大
量子位
0+阅读 · 2021年11月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Building Odia Shallow Parser
Arxiv
0+阅读 · 2022年4月19日
Arxiv
12+阅读 · 2018年9月5日
小贴士
相关VIP内容
【AAAI2022】GearNet:弱监督领域自适应的逐步对偶学习
专知会员服务
24+阅读 · 2022年1月20日
【中科大】数值计算方法扩充课程,116页pdf
专知会员服务
76+阅读 · 2022年1月7日
【干货书】概率,统计与数据,513页pdf
专知会员服务
129+阅读 · 2021年11月27日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
110+阅读 · 2021年6月23日
【ICML2021】来自观察的跨域模仿
专知会员服务
17+阅读 · 2021年5月25日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
最新《理论计算科学导论》书稿,655页pdf
专知会员服务
100+阅读 · 2020年9月17日
自回归模型:PixelCNN
专知会员服务
25+阅读 · 2020年3月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员