项目名称: 介观干涉仪中的量子输运:电荷与自旋

项目编号: No.10874252

项目类型: 面上项目

立项/批准年度: 2009

项目学科: 电工技术

项目作者: 曹三永

作者单位: 重庆大学

项目金额: 40万元

中文摘要: 随着半导体电子器件不断地小型化,使得有可能制备出尺寸小于100 纳米的芯片,从而不可避免地需要考虑量子效应以应对这种趋势。直觉上不可思议且具有神秘色彩的电子波动性在电子的输运性质中占据支配地位。特别地,各种依赖于自旋的量子现象,如单电子电荷效应、巨磁效应、电导振荡、自旋散射、自旋泵浦和自旋霍尔效应,都迫切需要清晰的物理解释以促进小型、快速、精密的商用量子器件的开发。一个重要的事实是,在人造纳米结构中,电子的电荷和自旋都是可操控的。本项目的目的是更好地理解人造纳米结构中量子输运的机理。这将主要基于两个方面:一是理解现有纳米器件中量子输运的基本操控原理;二是利用相应的机理制备具有更好性能的量子器件。为此,本项目拟通过对若干基本概念的探讨,发展新颖的理论和计算工具,从而解决若干重要的理论问题。

中文关键词: 纳米电子学;量子相干与退相干;量子输运;量子干涉

英文摘要: As rapid progress in the miniaturization of semiconductor electronic devices leads toward chip features smaller than 100 nanometers in size, physicists are inevitably faced with the looming presence of quantum mechanics-that counterintuitive and sometimes mysterious realm of physics wherein wavelike properties dominate the behavior of electrons. Various (spin-dependent) quantum phenomena such as single-electron charging effect, enhanced magneto-resistance, conductance oscillation, spin diffusion, spin pumping, and spin Hall effects has demanded urgently clear physical understanding to develop smaller, faster, and more accurate commercial quantum devices. This proposed research aims to provide better understanding on nano-science in nano-fabricated structures where the quantum states and dynamics of charges and spins can be manipulated. The understanding would bring advanced future quantum devices to reality earlier. This project will be achieved on two main ways to improve our understanding of nano-scale quantum devices. One is a way to understand fundamental governing principle for quantum transport in nano-scale devices. The other way is to apply it to model better devices and to analysis their characteristics for potential candidates of future quantum devices.

英文关键词: Nano electronics;Quantum coherence and decoherence;Quantum transport;Quantum Interference

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
57+阅读 · 2022年2月3日
专知会员服务
123+阅读 · 2021年8月4日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
21+阅读 · 2020年9月14日
全新量子充电技术:最快9秒充满一辆电动汽车?
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
年前你想攒钱买什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月19日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
微软出“奇招”,用沸腾液体为数据中心降温
微软研究院AI头条
0+阅读 · 2021年5月21日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月4日
Arxiv
0+阅读 · 2022年5月1日
小贴士
相关VIP内容
《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
57+阅读 · 2022年2月3日
专知会员服务
123+阅读 · 2021年8月4日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
21+阅读 · 2020年9月14日
相关资讯
全新量子充电技术:最快9秒充满一辆电动汽车?
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
年前你想攒钱买什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月19日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
微软出“奇招”,用沸腾液体为数据中心降温
微软研究院AI头条
0+阅读 · 2021年5月21日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员