The Poisson pressure solve resulting from the spectral element discretization of the incompressible Navier-Stokes equation requires fast, robust, and scalable preconditioning. In the current work, a parallel scaling study of Chebyshev-accelerated Schwarz and Jacobi preconditioning schemes is presented, with special focus on GPU architectures, such as OLCF's Summit. Convergence properties of the Chebyshev-accelerated schemes are compared with alternative methods, such as low-order preconditioners combined with algebraic multigrid. Performance and scalability results are presented for a variety of preconditioner and solver settings. The authors demonstrate that Chebyshev-accelerated-Schwarz methods provide a robust and effective smoothing strategy when using $p$-multigrid as a preconditioner in a Krylov-subspace projector. At the same time, optimal preconditioning parameters can vary for different geometries, problem sizes, and processor counts. This variance motivates the development of an autotuner to optimize solver parameters on-line, during the course of production simulations.
翻译:由不压缩纳维- 斯托克斯方程式的光元分解产生的 Poisson 压力解决方案要求快速、稳健和可缩放的前提条件。 在目前的工作中,对切比谢夫- 加速Schwarz 和 雅各基前提方案进行了平行规模化研究,特别侧重于GPU结构,如OLCF的峰顶峰。 Chebyshev- 加速方案与替代方法(如低序前置器加上升格多格)的趋同性能和可缩放性结果进行比较。 各种先决条件和解析器设置都展示了性能和可伸缩性结果。 作者们证明, Chebyshev- 加速Schwarz 方法在使用$p- Multigrime作为Krylov- 子空间投影仪的前提条件时, 提供了一种稳健有效的平滑战略。 与此同时,, 不同的地貌、 问题大小和处理器计时, 最优的前提条件参数可以不同。 这种差异促使在模拟生产过程中开发自动图, 以优化线上最优化的溶解参数。