Linear kinetic transport equations play a critical role in optical tomography, radiative transfer and neutron transport. The fundamental difficulty hampering their efficient and accurate numerical resolution lies in the high dimensionality of the physical and velocity/angular variables and the fact that the problem is multiscale in nature. Leveraging the existence of a hidden low-rank structure hinted by the diffusive limit, in this work, we design and test the angular-space reduced order model for the linear radiative transfer equation, the first such effort based on the celebrated reduced basis method (RBM). Our method is built upon a high-fidelity solver employing the discrete ordinates method in the angular space, an asymptotic preserving upwind discontinuous Galerkin method for the physical space, and an efficient synthetic accelerated source iteration for the resulting linear system. Addressing the challenge of the parameter values (or angular directions) being coupled through an integration operator, the first novel ingredient of our method is an iterative procedure where the macroscopic density is constructed from the RBM snapshots, treated explicitly and allowing a transport sweep, and then updated afterwards. A greedy algorithm can then proceed to adaptively select the representative samples in the angular space and form a surrogate solution space. The second novelty is a least-squares density reconstruction strategy, at each of the relevant physical locations, enabling the robust and accurate integration over an arbitrarily unstructured set of angular samples toward the macroscopic density. Numerical experiments indicate that our method is effective for computational cost reduction in a variety of regimes.


翻译:在光学透视、辐射传输和中子传输中,线性动能传输方程式发挥着关键作用。阻碍其高效和准确数字解析的根本困难在于物理和速度/角变量的高度维度,而且问题在于其性质是多尺度的。利用由分流限制暗示的隐藏的低级别结构的存在,在这项工作中,我们设计和测试线性辐射传输方程式的角-空间降序模型,这是以已知的降低基数法(RBM)为基础的首个此类工作。我们的方法建立在高纤维解析解析器上,在角空间使用离散的内径坐标变量解解度解析法,在物理空间上和速度/角变异性变异性变异性变异性变异性变异性变异性变异性变异性变异性变异性变异性方法中,在随后,通过整合操作一个不精确和直径直径变异性变异性变异性变异性变异性变异性变异性变异性变异性变异性变异性变性变异性变异性变异性变异性变异性变性变异性变异性变性变性变异性变异性变性变性变异性变异性变异性变性变性变性变性变性方法,在一次性变异性变异性变性变性变性变性变性变性变性变异性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变异性变性变性变性变性变性变异性变性变性变异性变性变性变异性变异性变异性变性变性变性变性变性变性变性变性变性变性变性变性变性变异性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员