Motivated by a wide range of real-world problems whose solutions exhibit boundary and interior layers, the numerical analysis of discretizations of singularly perturbed differential equations is an established sub-discipline within the study of the numerical approximation of solutions to differential equations. Consequently, much is known about how to accurately and stably discretize such equations on \textit{a priori} adapted meshes, in order to properly resolve the layer structure present in their continuum solutions. However, despite being a key step in the numerical simulation process, much less is known about the efficient and accurate solution of the linear systems of equations corresponding to these discretizations. In this paper, we discuss problems associated with the application of direct solvers to these discretizations, and we propose a preconditioning strategy that is tuned to the matrix structure induced by using layer-adapted meshes for convection-diffusion equations, proving a strong condition-number bound on the preconditioned system in one spatial dimension, and a weaker bound in two spatial dimensions. Numerical results confirm the efficiency of the resulting preconditioners in one and two dimensions, with time-to-solution of less than one second for representative problems on $1024\times 1024$ meshes and up to $40\times$ speedup over standard sparse direct solvers.


翻译:在一系列现实世界问题的推动下,各种解决办法表现出边界和内层,对奇不测差异方程的离散性进行了数字分析,这是对差异方程解决办法的数值近似值研究中的一个固定的次级学科。因此,对于如何准确和稳定地分解在\ textit{a priti}经调整的meshes上的这种等式,以适当解决其连续解决方案中存在的层结构问题,人们知道的很多。然而,尽管这是数字模拟进程中的一个关键步骤,但对于与这些离散性相对应的方程直线系统的效率和准确性解决办法却知得少得多。在本文件中,我们讨论了与将直接解析者应用于这些离异方方程的方法有关的各种问题。因此,我们提出了一个符合矩阵结构的先决条件性战略,即如何在调整层的中间方程式进行调整,以适当解决其连续解决方案中的层结构,证明一个空间维度系统的条件数量很强,而两个空间维度较弱。数字结果证实,由此而产生的先决条件在1美元和2美元方面的效率。我们讨论的是,10美元标准至10美元标准10度的10度的平流的10度问题在10度的10度平流的10度上,一个比10度的平流的10度的平面的平面的平面的平面的平面的平面的平面分辨率的平面的平面的平流。

0
下载
关闭预览

相关内容

【CHI2021】可解释人工智能导论
专知会员服务
120+阅读 · 2021年5月25日
专知会员服务
16+阅读 · 2021年5月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员