We propose a state redistribution method for high order discontinuous Galerkin methods on curvilinear embedded boundary grids. State redistribution relaxes the overly restrictive CFL condition that results from arbitrarily small cut cells and explicit time stepping. Thus, the scheme can take time steps that are proportional to the size of cells in the background grid. The discontinuous Galerkin scheme is stabilized by postprocessing the numerical solution after each stage or step of an explicit time stepping method. This is done by temporarily merging the small cells into larger, possibly overlapping neighborhoods using a special weighted inner product. Then, the numerical solution on the neighborhoods is returned to the base grid in a conservative fashion. The advantage of this approach is that it uses only basic mesh information that is already available in many cut cell codes and does not require complex geometric manipulations. Finally, we present a number of test problems that demonstrate the encouraging potential of this technique for applications on curvilinear embedded geometries. Numerical experiments reveal that our scheme converges with order $p+1$ in $L_1$ and between $p$ and $p+1$ in $L_\infty$ for problems with smooth solutions. We also demonstrate that state redistribution is capable of capturing shocks.
翻译:我们建议对卷轴嵌入的边界网格采用高顺序、不连续的Galerkin方法的国家再分配方法。 国家再分配可以放松任意小切细胞和明确时间跨步造成的过于限制性的CFL条件。 因此, 计划可以采取与背景网格中细胞大小相称的时间步骤。 封闭的Galerkin方案通过在每一个阶段或明确时间跨步方法的每个阶段或步骤后对数字解决方案进行后处理而稳定下来。 这是通过利用特殊的加权内产产品将小细胞暂时合并成较大的、 可能重叠的邻里。 然后, 以保守的方式将邻里的数字解决方案返回基网。 这种方法的优点是, 它只使用许多切割单元格码中已经存在的基本网格信息, 而不需要复杂的几何操纵。 最后, 我们提出了一些测试问题, 表明这种技术在曲线嵌入式的地理模型上的应用具有令人鼓舞的潜力。 数量实验显示, 我们的计划与1美元+1美元和美元和美元+1美元之间的基数, 美元和美元+1美元之间的基价+1美元之间的基网格网格网格, 也显示我们能够进行平稳的再分配。