This paper presents a comprehensive measurement-based trajectory-aware characterization of low-altitude Air-to-Ground (A2G) channels in a suburban environment. A 64-element Massive Multi-Input Multi-Output (MaMIMO) array was used to capture channels for three trajectories of an Uncrewed Aerial Vehicle (UAV), including two horizontal zig-zag flights at fixed altitudes and one vertical ascent, chosen to emulate AUE operations and to induce controlled azimuth and elevation sweeps for analyzing geometry-dependent propagation dynamics. We examine large-scale power variations and their correlation with geometric features, such as elevation, azimuth, and 3D distance, followed by an analysis of fading behavior through distribution fitting and Rician K-factor estimation. Furthermore, temporal non-stationarity is quantified using the Correlation Matrix Distance (CMD), and angular stationarity spans are utilized to demonstrate how channel characteristics change with the movement of the UAV. We also analyze Spectral Efficiency (SE) in relation to K-factor and Root Mean Square (RMS) delay spread, highlighting their combined influence on link performance. The results show that the elevation angle is the strongest predictor of the received power, with a correlation of more than 0.77 for each trajectory, while the Nakagami model best fits the small-scale fading. The K-factor increases from approximately 5 dB at low altitudes to over 15 dB at higher elevations, indicating stronger LoS dominance. Non-stationarity patterns are highly trajectory- and geometry-dependent, with azimuth most affected in horizontal flights and elevation during vertical flight. These findings offer valuable insights for modeling and improving UAV communication channels in 6G Non-Terrestrial Networks (NTNs).
翻译:暂无翻译