Reservoir simulations are computationally expensive in the well control and well placement optimization. Generally, numerous simulation runs (realizations) are needed in order to achieve the optimal well locations. In this paper, we propose a graph neural network (GNN) framework to build a surrogate feed-forward model which replaces simulation runs to accelerate the optimization process. Our GNN framework includes an encoder, a process, and a decoder which takes input from the processed graph data designed and generated from the simulation raw data. We train the GNN model with 6000 samples (equivalent to 40 well configurations) with each containing the previous step state variable and the next step state variable. We test the GNN model with another 6000 samples and after model tuning, both one-step prediction and rollout prediction achieve a close match with the simulation results. Our GNN framework shows great potential in the application of well-related subsurface optimization including oil and gas as well as carbon capture sequestration (CCS).
翻译:储量模拟在井井控制和井位优化中计算成本很高。 一般来说, 要实现最佳井位, 需要多次模拟运行( 实现) 。 在本文中, 我们提议了一个图形神经网络框架, 以构建一个替代模型, 取代模拟运行, 以加速优化进程。 我们的 GNN 框架包括一个编码器、 一个过程和一个解码器, 吸收从模拟原始数据设计和生成的处理过的图表数据中输入的信息。 我们用6,000个样本( 相当于40个水井配置)来培训 GNN 模型, 每个样本包含前一步状态变量和下一个步骤状态变量。 我们用另外6000个样本测试GNN 模型, 并在模型调整后, 单步预测和推出预测都与模拟结果非常匹配。 我们的 GNNN 框架在应用与油气以及碳固存固等密的子表面优化中表现出巨大的潜力 。