We construct and analyze a CutFEM discretization for the Stokes problem based on the Scott-Vogelius pair. The discrete piecewise polynomial spaces are defined on macro-element triangulations which are not fitted to the smooth physical domain. Boundary conditions are imposed via penalization through the help of a Nitsche-type discretization, whereas stability with respect to small and anisotropic cuts of the bulk elements is ensured by adding local ghost penalty stabilization terms. We show stability of the scheme as well as a divergence--free property of the discrete velocity outside an $O(h)$ neighborhood of the boundary. To mitigate the error caused by the violation of the divergence-free condition, we introduce local grad-div stabilization. The error analysis shows that the grad-div parameter can scale like $O(h^{-1})$, allowing a rather heavy penalty for the violation of mass conservation, while still ensuring optimal order error estimates.
翻译:我们根据Scott-Vogelius 配对制成并分析Stokes问题的CutFEM离散。 离散的片断多米空间被定义为与平滑的物理域不相容的宏观元素三角。 边界条件是通过尼采型离散帮助处罚的方式强制实施的, 而通过添加当地幽灵惩罚稳定条款来确保大宗元素的小型和厌食性削减的稳定性。 我们显示了计划的稳定性以及边界区区区区外离散速度的无差异性。 为了减轻因违反差异性条件而造成的错误,我们引入了本地梯度- div 稳定。 错误分析显示, 梯度参数可以像 $O (h)-1} 那样, 允许对违反大规模保护的行为处以相当严厉的处罚, 同时仍然确保最佳的秩序错误估计 。