A recent paper [J. A. Evans, D. Kamensky, Y. Bazilevs, "Variational multiscale modeling with discretely divergence-free subscales", Computers & Mathematics with Applications, 80 (2020) 2517-2537] introduced a novel stabilized finite element method for the incompressible Navier-Stokes equations, which combined residual-based stabilization of advection, energetic stability, and satisfaction of a discrete incompressibility condition. However, the convergence analysis and numerical tests of the cited work were subject to the restrictive assumption of a divergence-conforming choice of velocity and pressure spaces, where the pressure space must contain the divergence of every velocity function. The present work extends the convergence analysis to arbitrary inf-sup-stable velocity-pressure pairs (while maintaining robustness in the advection-dominated regime) and demonstrates the convergence of the method numerically, using both the traditional and isogeometric Taylor-Hood elements.
翻译:最近的一份论文[J. A. Evans, D. Kamensky, Y. Bazilevs, “不同型号的多尺度模型,离散、无差异的子尺度”,“计算机和数学与应用,80(2020) 2517-257”为无法压缩的纳维-斯托克斯方程式引入了一种新的稳定化元素法,该方程式结合了基于残余的吸附稳定性、强力稳定性和离散抑制性条件的满意度。然而,上述工作的趋同性分析和数字测试都受制于对速度和压力空间的异化选择这一限制性假设,即压力空间必须控制每个速度功能的差异。目前的工作将趋同性分析扩大到任意的上表速度压力对配方(同时保持吸附型系统坚固性),并用传统和等异计量泰勒-Hood元素从数字上展示了方法的趋同性。