In this paper, we study an adaptive finite element method for the elliptic equation with line Dirac delta functions as a source term.We investigate the regularity of the solution and the corresponding transmission problem to obtain the jump of normal derivative of the solution on line fractures. To handle the singularity of the solution, we adopt the meshes that conform to line fractures, and propose a novel a posteriori error estimator, in which the edge jump residual essentially use the jump of the normal derivative of the solution on line fractures. The error estimator is proven to be both reliable and efficient, finally an adaptive finite element algorithm is proposed based on the error estimator and the bisection refinement method. Numerical tests are presented to justify the theoretical findings.
翻译:在本文中,我们研究对椭圆方程式的适应性有限元素方法,用Dirac delta 线函数作为源词。 我们调查解决方案的规律性和相应的传输问题,以获得对线断裂的解决方案的正常衍生物的跳跃。 为了处理解决方案的独一性,我们采用了符合线断裂的丝片, 并提出了一个新颖的事后误差估计器, 边上跳动残留物基本上使用线断裂的解决方案的正常衍生物的跳跃。 错误估计器已证明既可靠又有效, 最后根据误差估计器和两部分精细法提出了适应性有限元素算法。 数字测试为理论结论提供了依据。