Tabular datasets with low-sample-size or many variables are prevalent in biomedicine. Practitioners in this domain prefer linear or tree-based models over neural networks since the latter are harder to interpret and tend to overfit when applied to tabular datasets. To address these neural networks' shortcomings, we propose an intrinsically interpretable network for heterogeneous biomedical data. We design a locally sparse neural network where the local sparsity is learned to identify the subset of most relevant features for each sample. This sample-specific sparsity is predicted via a \textit{gating} network, which is trained in tandem with the \textit{prediction} network. By forcing the model to select a subset of the most informative features for each sample, we reduce model overfitting in low-sample-size data and obtain an interpretable model. We demonstrate that our method outperforms state-of-the-art models when applied to synthetic or real-world biomedical datasets using extensive experiments. Furthermore, the proposed framework dramatically outperforms existing schemes when evaluating its interpretability capabilities. Finally, we demonstrate the applicability of our model to two important biomedical tasks: survival analysis and marker gene identification.
翻译:生物医学中普遍存在低范围或许多变量的表层数据集。 这一领域的从业者更喜欢线性或树基模型,而不是神经网络,因为神经网络较难解释,而且在应用表格数据集时往往过于适合。 为了解决这些神经网络的缺陷,我们提议为多种生物医学数据建立一个内在可解释的网络。 我们设计了一个本地稀疏的神经网络, 当地宽度可以学习如何辨别每个样本最相关特征的子集。 这种样本特有性通过\ textit{ging}网络预测, 该网络是与\ textit{pregy}网络同时培训的。 通过强迫模型为每个样本选择一个信息最丰富特征的子集, 我们减少模型在低范围数据中的超配, 并获得一个可解释的模型。 我们证明我们的方法在应用合成或现实世界生物医学数据集时, 超越了最先进的模型。 此外, 拟议的框架在评估其可解释性能力时, 大大地超越了现有方案。 最后, 我们通过强制模型对两种重要的生物医学任务进行了应用性测定。