Most existing deblurring methods focus on removing global blur caused by camera shake, while they cannot well handle local blur caused by object movements. To fill the vacancy of local deblurring in real scenes, we establish the first real local motion blur dataset (ReLoBlur), which is captured by a synchronized beam-splitting photographing system and corrected by a post-progressing pipeline. Based on ReLoBlur, we propose a Local Blur-Aware Gated network (LBAG) and several local blur-aware techniques to bridge the gap between global and local deblurring: 1) a blur detection approach based on background subtraction to localize blurred regions; 2) a gate mechanism to guide our network to focus on blurred regions; and 3) a blur-aware patch cropping strategy to address data imbalance problem. Extensive experiments prove the reliability of ReLoBlur dataset, and demonstrate that LBAG achieves better performance than state-of-the-art global deblurring methods without our proposed local blur-aware techniques.
翻译:多数现有的脱尘方法侧重于消除照相机摇动造成的全球模糊,而它们无法很好地处理物体移动造成的局部模糊。为了填补在真实场景中当地模糊不清的空缺,我们建立了第一个真实的本地运动模糊数据集(ReloBlur),该数据集由同步的波束分射照相系统拍摄,由进展后管道校正。根据ReLoBlur,我们提议建立一个本地布卢-Aware Gated网络(LBAG)和若干本地模糊可见技术,以弥合全球与本地模糊不清之间的鸿沟:1)基于背景减值的模糊探测方法,使模糊区域本地化;2)指导我们网络聚焦于模糊区域的一个大门机制;3)解决数据不平衡问题的模糊可见的补丁战略。广泛的实验证明ReLoBlur数据集的可靠性,并表明LBAG在不采用我们拟议的本地模糊度技术的情况下,其性能优于最先进的全球脱云方法。