The scarcity of labeled far-field speech is a constraint for training superior far-field speaker verification systems. Fine-tuning the model pre-trained on large-scale near-field speech substantially outperforms training from scratch. However, the fine-tuning method suffers from two limitations--catastrophic forgetting and overfitting. In this paper, we propose a weight transfer regularization(WTR) loss to constrain the distance of the weights between the pre-trained model with large-scale near-field speech and the fine-tuned model through a small number of far-field speech. With the WTR loss, the fine-tuning process takes advantage of the previously acquired discriminative ability from the large-scale near-field speech without catastrophic forgetting. Meanwhile, we use the PAC-Bayes generalization theory to analyze the generalization bound of the fine-tuned model with the WTR loss. The analysis result indicates that the WTR term makes the fine-tuned model have a tighter generalization upper bound. Moreover, we explore three kinds of norm distance for weight transfer, which are L1-norm distance, L2-norm distance and Max-norm distance. Finally, we evaluate the effectiveness of the WTR loss on VoxCeleb (pre-trained dataset) and FFSVC (fine-tuned dataset) datasets.


翻译:标记的远方语言的稀缺性是培训高超远方演讲者核查制度的一个制约因素。微调在大规模近地演讲中预先训练的模型,从头到尾大大优于培训。然而,微调方法有两种局限性——灾难性的遗忘和过度装配。在本文件中,我们提议了重力转移规范(WTR)损失,以限制预先训练模型与大规模近地演讲和微调模型之间的权重距离,通过少量远地演讲进行微调。随着WTR损失,微调过程利用了以前从大规模近地演讲中获得的区别性能力,而没有灾难性的忘记。与此同时,我们使用PAC-Bayes一般化理论来分析微调模型与WTR损失的通用性约束。分析结果表明,WTR术语使精调模型有一个较严格的概括性上限。此外,我们探索了三种重量转移的规范距离,即L1-中空距离、L2-诺伦特尔姆距离和Max-诺姆距离数据(我们评估了WFS-TRS-FS-FS-TR-C-S-RS-S-D-D-D-D-D-D-D-D-Lest-D-D-FS-FS-FS-FS-FS-FS-FS-FS-S-FS-S-S-S-S-S-FS-FS-FS-FS-S-S-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员